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STATIONARY DISCHARGE SUSTAINED BY ELECTRON THERMAL

CONDUCTION FOR EMERGENCE OF A MAGNETIC FLUX

THROUGH AN INSULATOR SURFACE

UDC 533.95:537.84S. F. Garanin and D. V. Karmishin

This paper considers a stationary surface discharge that arises when a magnetic flux emerges through
an insulator surface (H-pushed discharge). It is assumed that the heat flux in the discharge is deter-
mined only by the electron thermal conductivity of the ionized vapor of the insulator and the Nernst
effect. The main parameters of the discharge and the structure of the current layer are determined
for the case of strong magnetic fields (above 0.1 MOe) and an aluminum oxide insulator.
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Introduction. In the development of various powerful pulsed systems, a necessity arises to transfer electro-
magnetic energy through an insulator surface. Figure 1 shows diagrams of units in which there is energy transfer
to vacuum, a plasma, and a liner. The operation of such units can involve difficulties due to surface breakdown of
the insulator and its subsequent transition to the stage of a pseudo-stationary discharge (H-pushed discharge; this
term arose from the fact that the ponderomotive force [jH]/c pushes the conducting ionized vapor away from the
insulator surface; see Fig. 2). In this case, part of the current supplied to the installation is branched off to the
discharge, resulting in a decrease in the power transmitted to the load through the insulator surface.

The occurrence of an H-pushed discharge and its effect on the corresponding units were studied in [1, 2]. A
stationary discharge (Fig. 2) can arise because the plasma outflow from the discharge zone under the action of a
ponderomotive force is compensated by vaporization of the insulator material by the heat flow from the plasma.
In [1], the heat flow was determined by “black radiation” from the ionized vapor, and in [2], it was determined by
radiation from the entire plasma (depended on the geometry of the system).

The effect of an H-pushed discharge can be reduced by attenuating the radiation flows, e. g., by changing
the installation geometry, using special shields to protect from radiation, etc. However, in the case of a discharge
even without radiation, the discharge can further be sustained by the electron thermal conductivity of the plasma
and lead to branching of part of the current from the load and to the entry of the insulator material plasma to the
load volume. In the absence of radiation, the deleterious effect of these processes is weaker. In this sense, discharges
sustained by electron thermal conductivity are characterized by minimum values of the branched current and the
insulator material flow into the load volume.

In the present paper, we analyze an H-pushed discharge for a ceramic insulator (Al2O3) in the range of strong
magnetic fields (above 0.1 MOe) in the absence of radiation. For ionized insulator vapor, the Lorentzian plasma
approximation is used. The plasma is considered magnetoactive. The effect of magnetization on the thermal and
electric conductivity is taken into account. In addition, allowance is made for the Nernst effect, whose contribution
to the heat flux is of the same order as that of the electron thermal conductivity and whose contribution to the
electric field is similar to that of the electric resistance of the plasma.
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Fig. 1. Diagrams of units with electromagnetic energy transfer through the insulator surface:
1) conducting walls; 2) insulator; 3) plasma (or vacuum); 4) and liner.
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Fig. 2. Discharge zone: 1) unvaporized insulator; 2) insulator vapor; 3) beginning of the
discharge zone; 4) end of the discharge zone.

Basic Equations. Under typical experimental conditions, the discharge layer thickness is small compared
to the installation dimensions (about 0.1 cm at H ≈ 105 Oe and decreases with increase in H — see below);
therefore, the time of change in the vaporization regime is small compared to the times of change in the parameters
affecting the current layer. Consequently, the discharge can be considered stationary. Because discharge layer
thickness is smaller than the characteristic dimensions of the insulator, the curvature of the insulator surface can
also be ignored. Thus, we obtain a one-dimensional stationary problem in which all parameters depend only on the
normal coordinate.

The current layer thickness is relatively small, and in calculations for a particular installation, it can be
replaced by an infinitely narrow jump of MHD parameters. Nevertheless, to obtain the values of these parameters
at the exit from the current layer, it does not suffice to use only the integral conservation laws but it is necessary
to know the structure of this layer.

In the problem considered (see Fig. 2), the magnetic and electric fields are perpendicular to each other and
are parallel to the insulator surface and the heat flux is determined by the electron thermal conductivity and the
Nernst effect, i.e.,

q = −χ
dT

dx
+

b

e
Tj,

where χ is the electron thermal conductivity, T is the temperature, e is the electron charge, j is the current density,
and the coefficient b/e describes the Nernst effect. The problem allows arbitrary repeated ionization of the insulator
vapor.
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The problem is described by the following system of one-dimensional stationary MHD equations:

ρv = const, ρv2 + P + H2/(8π) = const,

ρv
(v2

2
+ w

)
+

c

4π
EH − χ

dT

dx
+

b

e
Tj = const, E = const, (1)

dH

dx
= −4π

c
j, E =

j

σ
+

1
c

vH − b

e

dT

dx
,

where ρ(x), v(x), P (x), H(x), w(x), E(x), χ(x), b(x), T (x), j(x), and σ(x) are the current values of the density, ve-
locity, pressure, magnetic field strength, specific enthalpy, electric field, electron thermal conductivity, the coefficient
describing the Nernst effect, temperature, current density, and the conductivity of the insulator vapor, respectively.
System (1) represents the conservation laws for the mass, momentum, and energy fluxes, two Maxwell’s equations,
and Ohm’s law. For a magnetoactive plasma,

σ =
3T 3/2

4
√

2πme2LZα
, χ =

3T 5/2γ

4
√

2πme4LZ
, (2)

where m is the electron mass; L is the Coulomb logarithm; Z is the mean square ion charge; the quantities α, b,
and γ in formulas (1) and (2) correspond to α⊥, βuT

Λ , and χe
⊥ from [3] and are evaluated from the approximate

formulas

α = 1− α′1y
2 + α′0
∆

, b =
y(β′′1 y2 + β′′0 )

∆
, γ =

γ′1y
2 + γ′0
∆

, ∆ = y4 + δ1y
2 + δ0, (3)

where y = ωeτe is the degree of magnetization of electrons. The coefficients (α′0, α′1, etc.) are chosen for the ion
charge Z →∞ by sequentially using the Lorentzian plasma approximation because in the discharge there is a rather
high temperature, and hence, the degree of ionization.

The transfer coefficients of a magnetoactive plasma are linked to the corresponding coefficients of a Lorentzian
nonmagnetized plasma σL and χL by the relations χ = γχL/γ0 = 0.08γχL and σ = α0σL/α = 3πσL/(32α), where α

and γ, according to (3), are determined by the plasma magnetization y and depend on T , ρ, and H, and the values
of α0 and γ0 correspond to the zero degree of magnetization.

The subscript 0 indicates the values at the beginning of the discharge zone, and the subscript 1 indicates
the values at the end of the discharge zone. Because the insulator density is higher than the vapor density, we have
v0 = 0, and at the end of the current layer, the vapor is accelerated to the outflow velocity of the magnetic lines of
force v1 = cE/H1. At the entrance to and exit from the current layer, the heat flux and current density tend to
zero; therefore, here dT/dx = 0 and dH/dx = 0. System (1) can now be written as

ρv = ρ1v1, ρv2 + P +
H2

8π
= ρ1v

2
1 + P1 +

H2
1

8π
= P0 +

H2
0

8π
,

ρv
(v2

2
+ w

)
+

c

4π
EH − χ

dT

dx
− bc

4πe
T

dH

dx
= ρ1v1

(v2
1

2
+ w1

)
+

c

4π
EH1 =

c

4π
EH0, (4)

−æH
dH

dx
+ vH = cE +

cb

e

dT

dx
,

where æH = c2/(4πσ) is the magnetic diffusivity.
Assuming the ionized insulator vapor to be a gas with an adiabatic exponent γT and using an approximate

calculation method in the region of repeated ionization (Saha’s equation with repeated ionization) [4] and the
formulas for the thermal and electric conductivities of a nonmagnetized Lorentzian plasma [7] χL and σL, we obtain
the interpolation formulas P ≈ Tmρn, χL ≈ T 1+iρj , and æHL ≈ T−iρ−j and the effective adiabatic exponent in
a certain range of temperatures and densities for a particular type of insulator. In this connection, the question
arises of whether the equilibrium formulas of thermodynamics are adequate for describing the examined plasma in
the absence of radiation. To answer this question, it is necessary to compare the plasma radiation characteristics
in the temperature and density ranges of interest calculated using the coronal model [5] and the thermodynamic
equilibrium approximation. The approach that will yield lower intensity is appropriate. In our case (T ≈ 10 eV and
ρ ≈ 10−4 g/cm3), the radiation intensity, according to [6], differs a priori from the quadratic dependence on density,
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which is necessary for the coronal model, and, therefore, the approach of local thermodynamic equilibrium should
be valid. Let us use the system of units g, cm, and µsec, MOe for the magnetic field, and eV for the temperature.
For a ceramic insulator from aluminum oxide at temperatures of 3–30 eV and densities of 10−5–10−3 g/cm3, we
obtain the following approximate formulas:

P (T, ρ) = 3.8 · 10−2Tmρn (m = 1.417, n = 0.917),

χL(T, ρ) = 1.84 · 10−8T 1+iρj (i = 0.825, j = 0.158),

æHL(T, ρ) = c2/(4πσL(T, ρ)) = 0.173T−iρ−j , γT = 1.2.

The values of the quantities calculated by these formulas in the indicated range of temperatures and densities differ
from those calculated using Saha’s equation [4] and the refined Coulomb logarithm [8] by not more than 5%.

According to the previously proposed method for solving similar problems [9], the measurements units for
the temperature [T ] and density [ρ], which determine the characteristic parameters of the problem, are found from
the condition of equality of the magnetic diffusivity æH and the thermal diffusivity æTL = (γT − 1)χLT/(γT p)
(assuming that the characteristic plasma magnetization y ≈ 1, which is a consequence of equality of the magnetic
diffusivity and thermal diffusivity; for definiteness of the choice of measurement units, we equate the values of
the magnetic diffusivity and thermal diffusivity for y = 0) and from equality of the thermal pressure to magnetic
pressure (for definiteness, as a unit of measurement for pressure we use the magnetic pressure at the exit from the
discharge zone):

[P ] = P ([T ], [ρ]) = H2
1/(8π), æHL([T ], [ρ]) = æTL([T ], [ρ]).

Solving these two equations, we obtain

[T ] = 101H0.415
1 , [ρ] = 8.37 · 10−4H1.54

1 . (5)

Let us introduce the dimensionless variables

t =
T

[T ]
, r =

ρ

[ρ]
, u =

v

v1
, h =

H

H1
, p =

P

[P ]
=

P

H2
1/8π

= tmrn, ξ =
x

[x]
, (6)

where [x] is found from the relation [x] = æHL([T ], [ρ])/v1, which, in view of (5), yields

[x] = 1.71 · 10−3
√

r1/µ H−0.816
1 . (7)

For convenience, we introduce the dimensionless parameters

β = 8πp1/H2
1 , µ = 8πρ1v

2
1/H2

1 (8)

and the constant g = 2γT /(γT − 1) and proceed to considering system (4). We substitute the relations cE = v1H1

and w = γT p/((γT − 1)ρ) into the third and fourth equations of system (4) and divide the first equation by v1[ρ],
the second by H2

1/(8π), the third by v1H
2
1/(16π), and the fourth by v1H1. From the first equation, we obtain the

relationship between the dimensionless density and the velocity r = r1/u. Substituting this relation into the other
three equations (4), we arrive at the system

µu + rn
1 tmu−n + h2 = µ + β + 1,

µu2 + grn
1 tmu1−n + 4h− 0.08γgrj

1t
1+iu−j dt

dξ
−√g bt

dh

dξ
= µ + 4 + gβ, (9)

−32α

3π
r−j
1 t−iuj dh

dξ
+ uh = 1 +

b
√

g

4
dt

dξ
.

Here t, u, and h are unknown functions of the variable ξ and µ, β, and r1 are parameters. From the first and
second equations of system (9), setting u = 0 and ignoring derivatives, we obtain the following expressions for the
magnetic field and pressure in the insulator

h0 = (µ + 4 + gβ)/4, p0 = µ + β + 1− h2
0.
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In the chosen units of measurement, the degree of magnetization of the insulator material plasma is expressed
as

y = ωeτe =
3π

32
√

2

√
γT

γT − 1

(
1 +

1
Z

)
rj−n
1 t1+i−mun−jh. (10)

Since we use the Lorentzian plasma approximation, considering Z large enough, for γT = 1.2 we obtain

ωeτe = 0.51rj−n
1 t1+i−mun−jh.

Method of Solution. Eliminating the magnetic field h from Eqs. (9), we obtain the system

a1
dt

dξ
+ b1

du

dξ
= c1, a2

dt

dξ
+ b2

du

dξ
= c2,

which contains the temperature and velocity as functions of the coordinate ξ. This system can be reduced to the
form

dt

dξ
=

c1b2 − b1c2

a1b2 − b1a2
,

du

dξ
=

a1c2 − c1a2

a1b2 − b1a2

provided that the determinant a1b2− b1a2 differs from zero. Since the right sides of the equations do not contain ξ,
the order of the system can be reduced. We divide one equation by the other and integrate the equation

dt

du
=

c1b2 − b1c2

a1c2 − c1a2
(11)

with the boundary conditions u0 = 0, t0 = 0, u1 = 1, and t1 = (βr−n
1 )1/m and the three free parameters µ, β,

and r1.
The initial and final points are singular, exit from them was performed using the expansion t(u). Exit from

the terminal point is uniquely determined by the parameters and boundary conditions, and exit form the initial
point contains an arbitrariness due to the uncertainty of the initial conductivity distribution in the insulator (and,
hence, the possibility of subsequent breakdown) and a possible nonzero value for the heat flux form the discharge
zone.

The uncertainty of the exit from the initial point is eliminated if we take into account that the expansion
near the initial point corresponds to the primary heating of the plasma due to electron thermal conduction (i.e.,
the Joule heat release in this region is small compared to the heating due to thermal conduction, and the heat flux
on the boundary of the discharge zone is equal to zero) and in the vicinity of the initial point, the plasma is not
magnetized. At the initial point, t = 0, u = 0, h = h0, and p = p0, and at the exit from it, we can approximately
set p = rn

1 tmu−n = p0, whence u = r1p
−1/n
0 tm/n. Since the initial heating of the insulator is due to electron

thermal conduction, from the second equation of system (9) we obtain rj
1t

1+iu−j dt/dξ = rn
1 tmu1−n. Substituting

the expression for u into the latter formula and integrating the result over ξ, we obtain

t(ξ) =
[(

2 + i− m

n
(1 + j)

)
r1p

n−1−j
n

0

] 1
2+i−m(1+j)/n

ξ
1

2+i−m(1+j)/n .

Then, u(ξ) = r1p
−1/n
0 (t(ξ))m/n and integrating the third equation of system (9), we have

h(ξ) = h0 − p
j/n
0

[(
2 + i− m

n
(1 + j)

)
r1p

n−1−j
n

0

] ni−mj
n(2+i)−m(1+j) (2 + i)n− (1 + j)m

(1 + i)2n− (1 + 2j)m
ξ

(1+i)2n−(1+2j)m
(2+i)n−(1+j)m .

The asymptotic behavior of the temperature with accuracy up to the next terms of expansion in ξ, which eliminates
the uncertainty due to the possibility of breakdown in the specification of the initial conductivity distribution in
the insulator, is obtained by substituting u(ξ) and h(ξ) into the first equation of system (9).

The expansion near the terminal point is determined by the exponential nature of the approach of the MHD
parameters to their final values.

For the specified discharge regime, which can be characterized by a single parameter, for example, µ, in
solving the equations, we needed to select the other two parameters (β, r1) so as to obtain a solution with the
specified boundary conditions. In this case, it was necessary to pass through the singular point corresponding to
the vanishing of the numerator and denominator of (11) (at this point, the flow velocity becomes equal to thermal
sound velocity v2 = γP/ρ). By changing one parameter, it is possible to achieve to arrive at this singular point
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after exiting from the initial point by the specified expansion, and changing the other parameter, one can get from
the terminal point to the same singular point. As a result of the solution, for each µ we obtain particular values
of β and r1, i.e., dependences β(µ) and r1(µ) describing various discharge regimes.

Calculation Results. Figure 3 shows the structure of the current zone, i.e., curves of the dimensionless
MHD parameters versus the coordinate x. Figure 4 gives curves of β(µ) and r1(µ).

In the problem considered there is a limiting regime of insulator vaporization [1] similar to the Jouguet
regime in combustion, in which, the velocity of the plasma escaping from the discharge is equal to the “total” sound
velocity:

v2
1 6 c2

1 ≡ γP1/ρ1 + H2
1/(4πρ1). (12)

For the dimensionless variables, this limitation is expressed as

µ 6 µmax ≡ 2 + γT β.

The limiting regime corresponds to the calculated values µmax = 2.08, βmax = 0.0675, and r1 max = 0.439. For the
parameter values exceeding the maximum ones, the discharge ceases to be stationary, i.e., if the plasma boundary
moves away from the insulator at a velocity exceeding the velocity calculated from formula (12) (for example, during
acceleration of a light liner or for a discharge into vacuum), then a rarefaction wave is formed between this boundary
and the plasma escaping from the discharge.
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TABLE 1
Dimensionless Discharge Parameters

µ β r1 h0

0.01 0.0007024 0.1173 1.0046
0.1 0.006763 0.2215 1.0453
0.2 0.01298 0.2651 1.0889
0.5 0.02878 0.3306 1.2113
1 0.04766 0.3837 1.3930

1,5 0,05972 0,4147 1,5542
2 0.06675 0.4363 1.7003

2.08 0.06749 0.4392 1.7225

TABLE 2

The Main MHD Parameters versus Discharge Intensity
for a Magnetic Field in the Insulator H0 = 1 MOe

µ H1, MOe v1, km/sec ρ1, 10−4 g/cm3 T1, eV E, kV/cm

0.01 0.995 20.11 0.975 2.408 20.02
0.1 0.957 45.87 1.731 7.762 43.88
0.2 0.918 58.74 1.945 10.76 53.94
0.5 0.826 81.15 2.059 15.66 66.99
1 0.718 103.2 1.927 19.16 74.06

1.5 0.643 118.5 1.759 20.41 76.25
2 0.588 130.7 1.612 20.58 76.86

2.08 0.581 132.4 1.591 20.54 76.89

The calculated values of the parameters µ, β, and r1 and the corresponding values of the dimensionless h0

are presented in Table 1. Table 2 gives the values of the magnetic field magnitude H1, velocity v1, density ρ1, and
temperature T1 at the exit from the discharge, and the electric field E [kV/cm] calculated according to (5), (6),
and (8) from the formulas

H1 = H0/h0, T1 = t1[T ] = 101β0.706r−0.647
1 h−0.415

0 H0.415
0 , ρ1 = 8.37 · 10−4r1h

−1.54
0 H1.54

0 ,

v1 =

√
µH2

1

8πρ1
= 6.9

( µ

r1

)0.5

h−0.23
0 H0.23

0 , E =
v1

c
H1 = 69

( µ

r1

)0.5

h−1.23
0 H1.23

0

(13)

for a magnetic field in the insulator H0 = 1 MOe.
Based on formulas (13), the following method for calculating an H-pushed discharge can be proposed. Using

formulas (13) for the electric field with the initial fields E and H and data from Table 1, we find the parameter µ.
Next, from Fig. 4 we obtain the values of β and r1, h0, and then, using the remaining formulas (13), we find all
plasma parameters at the exit from the H-pushed discharge zone in the absence of radiation. These parameters can
be specified as the boundary conditions in full MHD calculations of particular units and installations.

It reasonable to compare the H-pushed discharge regimes due to plasma radiation [1] and the discharge
considered in the present study. Figures 5 and 6 gives curves of the mass flux and the fraction of the current
branched off to the discharge (δI = 1 − 1/h0) versus electric field at H0 = 1 MOe (the solid curves refer to
calculations for a discharge sustained by electron thermal conduction with allowance for all significant effects, and
the dashed curves refer to calculations for discharge sustained by radiation from the plasma). In the case of a
discharge sustained by electron thermal conduction with the value of E corresponding to the limiting regime of
insulator vaporization (and the maximum branching of the current) for H0 = 1 MOe in the radiative problem, the
branched current is 10 times lower and the mass flux is 15 times smaller. For the value of E corresponding to
δI ≈ 10% in the radiative problem, the branched current in the case considered is 3 times lower and the mass flux
4 times smaller. Thus, even for a discharge occurring on the surface, its deleterious effect is weaker in the case of no
radiation incident on the insulator surface (for example, in the case of protection of the insulator against radiation).

Conclusions. The present study shows that emergence of a magnetic field through an insulator surface
results in a stationary discharge regime if the discharge is sustained by electron thermal conductivity, taking into
account all effects of significance, including plasma magnetization and the Nernst effect.
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Fig. 5. Mass flux at the exit from the discharge zone versus electric field.

Fig. 6. Fraction of the current branched off to the discharge versus electric field.

If the insulator surface is protected from radiation with preservation of the electric field magnitude (for
example, with preservation of the liner acceleration velocity), an H-pushed discharge has a considerably smaller
negative effect. Thus, the mass flux of the insulator material to the load volume decreases by a factor of up to 15
compared to a discharge sustained by radiation, and the branched current decreases by a factor of 10, depending
on the vaporization regime (the higher the vaporization rate, the larger the difference).

The discharge characteristics obtained for the ceramic insulator can be specified as the boundary conditions
in calculations for units in the absence of radiation and can be used to estimate the minimum discharge parameters
in the case where the radiation flux is unknown.

We thank A. A. Karpikov and V. B. Yakubov for useful discussions.
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